大部分内容都为摘抄
其实已经看过很多遍,但一直没用过。

内存管理

task、queue、semaphores和event group等。为了让FreeRTOS更容易使用,这些内核对象一般都是动态分配:用到时分配,不使用时释放。使用内存的动态管理功能,简化了程序设计:不再需要小心翼翼地提前规划各类对象,简化API函数的涉及,甚至可以减少内存的使用。

FreeRTOS的5种内存管理方法

文件 优点 缺点
heap_1.c 分配简单,时间确定 只分配、不回收
heap_2.c 动态分配、最佳匹配 碎片、时间不定
heap_3.c 调用标准库函数 速度慢、时间不定
heap_4.c 相邻空闲内存可合并 可解决碎片问题、时间不定
heap_5.c 在heap_4基础上支持分隔的内存块 可解决碎片问题、时间不定

heap_1.c

  • 实现最简单

  • 没有碎片问题

  • 一些要求非常严格的系统里,不允许使用动态内存,就可以使用heap_1

heap_2.c 弃用

Heap_2之所以还保留,只是为了兼容以前的代码。新设计中不再推荐使用Heap_2。建议使用Heap_4来替代Heap_2,更加高效。

heap_3.c

Heap_3使用标准C库里的malloc、free函数,所以堆大小由链接器的配置决定,配置项configTOTAL_HEAP_SIZE不再起作用。

C库里的malloc、free函数并非线程安全的,Heap_3中先暂停FreeRTOS的调度器,再去调用这些函数,使用这种方法实现了线程安全。

heap_4.c

跟Heap_1、Heap_2一样,Heap_4也是使用大数组来分配内存。

Heap_4使用首次适应算法(first fit)来分配内存。它还会把相邻的空闲内存合并为一个更大的空闲内存,这有助于较少内存的碎片问题。

heap_5.c

Heap_5分配内存、释放内存的算法跟Heap_4是一样的。

相比于Heap_4,Heap_5并不局限于管理一个大数组:它可以管理多块、分隔开的内存。

在嵌入式系统中,内存的地址可能并不连续,这种场景下可以使用Heap_5。

既然内存是分隔开的,那么就需要进行初始化:确定这些内存块在哪、多大:

在使用pvPortMalloc之前,必须先指定内存块的信息

使用vPortDefineHeapRegions来指定这些信息

Heap相关的函数

函数 说明

void *pvPortMalloc( size_t xWantedSize ) | 分配内存
void vPortFree( void *pv ) | 释放内存
size_t xPortGetFreeHeapSize( void ) | 获取剩余内存
size_t xPortGetMinimumEverFreeHeapSize( void ) | 获取最小剩余内存

malloc失败的钩子函数

在pvPortMalloc函数内部

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
void * pvPortMalloc( size_t xWantedSize )
{
......
#if ( configUSE_MALLOC_FAILED_HOOK == 1 )
{
if( pvReturn == NULL )
{
extern void vApplicationMallocFailedHook( void );
vApplicationMallocFailedHook();
}
}
#endif

return pvReturn;
}

所以,如果想使用这个钩子函数:

在FreeRTOSConfig.h中,把configUSE_MALLOC_FAILED_HOOK定义为1

提供vApplicationMallocFailedHook函数

pvPortMalloc失败时,才会调用此函数

任务管理

在FreeRTOS中,任务就是一个函数,原型如下:

1
void ATaskFunction( void *pvParameters );

要注意的是:

  • 这个函数不能返回
  • 同一个函数,可以用来创建多个任务;换句话说,多个任务可以运行同一个函数
  • 函数内部,尽量使用局部变量:
    • 每个任务都有自己的栈
    • 每个任务运行这个函数时
      • 任务A的局部变量放在任务A的栈里、任务B的局部变量放在任务B的栈里
      • 不同任务的局部变量,有自己的副本
    • 函数使用全局变量、静态变量的话
      • 只有一个副本:多个任务使用的是同一个副本
      • 要防止冲突(后续会讲)

创建任务

创建任务时使用的函数如下:

1
2
3
4
5
6
BaseType_t xTaskCreate( TaskFunction_t pxTaskCode, // 函数指针, 任务函数
const char * const pcName, // 任务的名字
const configSTACK_DEPTH_TYPE usStackDepth, // 栈大小,单位为word,10表示40字节
void * const pvParameters, // 调用任务函数时传入的参数
UBaseType_t uxPriority, // 优先级
TaskHandle_t * const pxCreatedTask ); // 任务句柄, 以后使用它来操作这个任务

参数说明:

参数 描述
pvTaskCode 函数指针,可以简单地认为任务就是一个C函数。
它稍微特殊一点:永远不退出,或者退出时要调用”vTaskDelete(NULL)”
pcName 任务的名字,FreeRTOS内部不使用它,仅仅起调试作用。
长度为:configMAX_TASK_NAME_LEN
usStackDepth 每个任务都有自己的栈,这里指定栈大小。
单位是word,比如传入100,表示栈大小为100 word,也就是400字节。
最大值为uint16_t的最大值。
怎么确定栈的大小,并不容易,很多时候是估计。
精确的办法是看反汇编码。
pvParameters 调用pvTaskCode函数指针时用到:pvTaskCode(pvParameters)
uxPriority 优先级范围:0~(configMAX_PRIORITIES – 1)
数值越小优先级越低,
如果传入过大的值,xTaskCreate会把它调整为(configMAX_PRIORITIES – 1)
pxCreatedTask 用来保存xTaskCreate的输出结果:task handle。
以后如果想操作这个任务,比如修改它的优先级,就需要这个handle。
如果不想使用该handle,可以传入NULL。
返回值 成功:pdPASS;
失败:errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY(失败原因只有内存不足)
注意:文档里都说失败时返回值是pdFAIL,这不对。
pdFAIL是0,errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY是-1。

任务的删除

删除任务时使用的函数如下:

1
void vTaskDelete( TaskHandle_t xTaskToDelete );

参数说明:

参数 描述
pvTaskCode 任务句柄,使用xTaskCreate创建任务时可以得到一个句柄。
也可传入NULL,这表示删除自己。

怎么删除任务?举个不好的例子:

  • 自杀:vTaskDelete(NULL)
  • 被杀:别的任务执行vTaskDelete(pvTaskCode),pvTaskCode是自己的句柄
  • 杀人:执行vTaskDelete(pvTaskCode),pvTaskCode是别的任务的句柄

任务优先级和Tick

任务优先级

在上个示例中我们体验过优先级的使用:高优先级的任务先运行。

优先级的取值范围是:0~(configMAX_PRIORITIES – 1),数值越大优先级越高。

FreeRTOS的调度器可以使用2种方法来快速找出优先级最高的、可以运行的任务。使用不同的方法时,configMAX_PRIORITIES 的取值有所不同。

  • 通用方法
    使用C函数实现,对所有的架构都是同样的代码。对configMAX_PRIORITIES的取值没有限制。但是configMAX_PRIORITIES的取值还是尽量小,因为取值越大越浪费内存,也浪费时间。
    configUSE_PORT_OPTIMISED_TASK_SELECTION被定义为0、或者未定义时,使用此方法。
  • 架构相关的优化的方法
    架构相关的汇编指令,可以从一个32位的数里快速地找出为1的最高位。使用这些指令,可以快速找出优先级最高的、可以运行的任务。
    使用这种方法时,configMAX_PRIORITIES的取值不能超过32。
    configUSE_PORT_OPTIMISED_TASK_SELECTION被定义为1时,使用此方法。

在学习调度方法之前,你只要初略地知道:

  • FreeRTOS会确保最高优先级的、可运行的任务,马上就能执行
  • 对于相同优先级的、可运行的任务,轮流执行

这无需记忆,就像我们举的例子:

  • 厨房着火了,当然优先灭火
  • 喂饭、回复信息同样重要,轮流做

Tick

对于同优先级的任务,它们“轮流”执行。怎么轮流?你执行一会,我执行一会。

任务状态

以前我们很简单地把任务的状态分为2中:运行(Runing)、非运行(Not Running)。

对于非运行的状态,还可以继续细分,比如前面的FreeRTOS_04_task_priority中:

  • Task3执行vTaskDelay后:处于非运行状态,要过3秒种才能再次运行
  • Task3运行期间,Task1、Task2也处于非运行状态,但是它们随时可以运行
  • 这两种”非运行”状态就不一样,可以细分为:
    • 阻塞状态(Blocked)
    • 暂停状态(Suspended)
    • 就绪状态(Ready)

Delay函数

有两个Delay函数:

  • vTaskDelay:至少等待指定个数的Tick Interrupt才能变为就绪状态
  • vTaskDelayUntil:等待到指定的绝对时刻,才能变为就绪态。

空闲任务及其钩子函数

为什么必须要有空闲任务?一个良好的程序,它的任务都是事件驱动的:平时大部分时间处于阻塞状态。有可能我们自己创建的所有任务都无法执行,但是调度器必须能找到一个可以运行的任务:所以,我们要提供空闲任务。在使用vTaskStartScheduler() 函数来创建、启动调度器时,这个函数内部会创建空闲任务:

空闲任务优先级为0:它不能阻碍用户任务运行

空闲任务要么处于就绪态,要么处于运行态,永远不会阻塞

空闲任务的优先级为0,这意味着一旦某个用户的任务变为就绪态,那么空闲任务马上被切换出去,让这个用户任务运行。在这种情况下,我们说用户任务”抢占”(pre-empt)了空闲任务,这是由调度器实现的。

我们可以添加一个空闲任务的钩子函数(Idle Task Hook Functions),空闲任务的循环每执行一次,就会调用一次钩子函数。钩子函数的作用有这些:

执行一些低优先级的、后台的、需要连续执行的函数

测量系统的空闲时间:空闲任务能被执行就意味着所有的高优先级任务都停止了,所以测量空闲任务占据的时间,就可以算出处理器占用率。

让系统进入省电模式:空闲任务能被执行就意味着没有重要的事情要做,当然可以进入省电模式了。

空闲任务的钩子函数的限制:

不能导致空闲任务进入阻塞状态、暂停状态

如果你会使用vTaskDelete() 来删除任务,那么钩子函数要非常高效地执行。如果空闲任务移植卡在钩子函数里的话,它就无法释放内存。

调度算法

配置项 A B C D E
configUSE_PREEMPTION 1 1 1 1 0
configUSE_TIME_SLICING 1 1 0 0 x
configIDLE_SHOULD_YIELD 1 0 1 0 x
说明 常用 很少用 很少用 很少用 几乎不用

注:

  • A:可抢占+时间片轮转+空闲任务让步

  • B:可抢占+时间片轮转+空闲任务不让步

  • C:可抢占+非时间片轮转+空闲任务让步

  • D:可抢占+非时间片轮转+空闲任务不让步

  • E:合作调度

同步互斥与通信

队列:

里面可以放任意数据,可以放多个数据

任务、ISR都可以放入数据;任务、ISR都可以从中读出数据

事件组:

一个事件用一bit表示,1表示事件发生了,0表示事件没发生

可以用来表示事件、事件的组合发生了,不能传递数据

有广播效果:事件或事件的组合发生了,等待它的多个任务都会被唤醒

信号量:

核心是”计数值”

任务、ISR释放信号量时让计数值加1

任务、ISR获得信号量时,让计数值减1

任务通知:

核心是任务的TCB里的数值

会被覆盖

发通知给谁?必须指定接收任务

只能由接收任务本身获取该通知

互斥量:

数值只有0或1

谁获得互斥量,就必须由谁释放同一个互斥量

队列

队列(queue)可以用于”任务到任务”、”任务到中断”、”中断到任务”直接传输信息。

  • 队列可以包含若干个数据:队列中有若干项,这被称为”长度”(length)

  • 每个数据大小固定

  • 创建队列时就要指定长度、数据大小

  • 数据的操作采用先进先出的方法(FIFO,First In First Out):写数据时放到尾部,读数据时从头部读

  • 也可以强制写队列头部:覆盖头部数据

队列的特性

传输数据的两种方法

FreeRTOS使用拷贝值的方法,这更简单:

  • 局部变量的值可以发送到队列中,后续即使函数退出、局部变量被回收,也不会影响队列中的数据

  • 无需分配buffer来保存数据,队列中有buffer

  • 局部变量可以马上再次使用

  • 发送任务、接收任务解耦:接收任务不需要知道这数据是谁的、也不需要发送任务来释放数据

  • 如果数据实在太大,你还是可以使用队列传输它的地址

  • 队列的空间有FreeRTOS内核分配,无需任务操心

  • 对于有内存保护功能的系统,如果队列使用引用方法,也就是使用地址,必须确保双方任务对这个地址都有访问权限。使用拷贝方法时,则无此限制:内核有足够的权限,把数据复制进队列、再把数据复制出队列。

队列阻塞访问

只要知道队列的句柄,谁都可以读、写该队列。任务、ISR都可读、写队列。可以多个任务读写队列。

任务读写队列时,简单地说:如果读写不成功,则阻塞;可以指定超时时间。口语化地说,就是可以定个闹钟:如果能读写了就马上进入就绪态,否则就阻塞直到超时。

某个任务读队列时,如果队列没有数据,则该任务可以进入阻塞状态:还可以指定阻塞的时间。如果队列有数据了,则该阻塞的任务会变为就绪态。如果一直都没有数据,则时间到之后它也会进入就绪态。

既然读取队列的任务个数没有限制,那么当多个任务读取空队列时,这些任务都会进入阻塞状态:有多个任务在等待同一个队列的数据。当队列中有数据时,哪个任务会进入就绪态?

优先级最高的任务

如果大家的优先级相同,那等待时间最久的任务会进入就绪态

跟读队列类似,一个任务要写队列时,如果队列满了,该任务也可以进入阻塞状态:还可以指定阻塞的时间。如果队列有空间了,则该阻塞的任务会变为就绪态。如果一直都没有空间,则时间到之后它也会进入就绪态。

既然写队列的任务个数没有限制,那么当多个任务写”满队列”时,这些任务都会进入阻塞状态:有多个任务在等待同一个队列的空间。当队列中有空间时,哪个任务会进入就绪态?

优先级最高的任务

如果大家的优先级相同,那等待时间最久的任务会进入就绪态

队列函数

使用队列的流程:创建队列、写队列、读队列、删除队列。

创建

队列的创建有两种方法:动态分配内存、静态分配内存,

  • 动态分配内存:xQueueCreate,队列的内存在函数内部动态分配

函数原型如下:

1
QueueHandle_t xQueueCreate( UBaseType_t uxQueueLength, UBaseType_t uxItemSize );
参数 说明
uxQueueLength 队列长度,最多能存放多少个数据(item)
uxItemSize 每个数据(item)的大小:以字节为单位
返回值 非0:成功,返回句柄,以后使用句柄来操作队列
NULL:失败,因为内存不足
  • 静态分配内存:xQueueCreateStatic,队列的内存要事先分配好

函数原型如下:

1
2
3
4
5
6
QueueHandle_t xQueueCreateStatic(
UBaseType_t uxQueueLength,
UBaseType_t uxItemSize,
uint8_t *pucQueueStorageBuffer,
StaticQueue_t *pxQueueBuffer
);
参数 说明
uxQueueLength 队列长度,最多能存放多少个数据(item)
uxItemSize 每个数据(item)的大小:以字节为单位
pucQueueStorageBuffer 如果uxItemSize非0,pucQueueStorageBuffer必须指向一个uint8_t数组,
此数组大小至少为”uxQueueLength * uxItemSize”
pxQueueBuffer 必须执行一个StaticQueue_t结构体,用来保存队列的数据结构
返回值 非0:成功,返回句柄,以后使用句柄来操作队列
NULL:失败,因为pxQueueBuffer为NULL

示例代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
// 示例代码
#define QUEUE_LENGTH 10
#define ITEM_SIZE sizeof( uint32_t )

// xQueueBuffer用来保存队列结构体
StaticQueue_t xQueueBuffer;

// ucQueueStorage 用来保存队列的数据
// 大小为:队列长度 * 数据大小
uint8_t ucQueueStorage[ QUEUE_LENGTH * ITEM_SIZE ];

void vATask( void *pvParameters )
{
QueueHandle_t xQueue1;

// 创建队列: 可以容纳QUEUE_LENGTH个数据,每个数据大小是ITEM_SIZE
xQueue1 = xQueueCreateStatic( QUEUE_LENGTH,
ITEM_SIZE,
ucQueueStorage,
&xQueueBuffer );
}

复位

队列刚被创建时,里面没有数据;使用过程中可以调用xQueueReset()把队列恢复为初始状态,此函数原型为:

1
2
3
4
/* pxQueue : 复位哪个队列;
* 返回值: pdPASS(必定成功)
*/
BaseType_t xQueueReset( QueueHandle_t pxQueue);

删除

删除队列的函数为vQueueDelete(),只能删除使用动态方法创建的队列,它会释放内存。原型如下:

1
void vQueueDelete( QueueHandle_t xQueue );

写队列

可以把数据写到队列头部,也可以写到尾部,这些函数有两个版本:在任务中使用、在ISR中使用。函数原型如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
/* 等同于xQueueSendToBack
* 往队列尾部写入数据,如果没有空间,阻塞时间为xTicksToWait
*/
BaseType_t xQueueSend(
QueueHandle_t xQueue,
const void *pvItemToQueue,
TickType_t xTicksToWait
);

/*
* 往队列尾部写入数据,如果没有空间,阻塞时间为xTicksToWait
*/
BaseType_t xQueueSendToBack(
QueueHandle_t xQueue,
const void *pvItemToQueue,
TickType_t xTicksToWait
);


/*
* 往队列尾部写入数据,此函数可以在中断函数中使用,不可阻塞
*/
BaseType_t xQueueSendToBackFromISR(
QueueHandle_t xQueue,
const void *pvItemToQueue,
BaseType_t *pxHigherPriorityTaskWoken
);

/*
* 往队列头部写入数据,如果没有空间,阻塞时间为xTicksToWait
*/
BaseType_t xQueueSendToFront(
QueueHandle_t xQueue,
const void *pvItemToQueue,
TickType_t xTicksToWait
);

/*
* 往队列头部写入数据,此函数可以在中断函数中使用,不可阻塞
*/
BaseType_t xQueueSendToFrontFromISR(
QueueHandle_t xQueue,
const void *pvItemToQueue,
BaseType_t *pxHigherPriorityTaskWoken
);

这些函数用到的参数是类似的,统一说明如下:

参数 说明
xQueue 队列句柄,要写哪个队列
pvItemToQueue 数据指针,这个数据的值会被复制进队列,
复制多大的数据?在创建队列时已经指定了数据大小
xTicksToWait 如果队列满则无法写入新数据,可以让任务进入阻塞状态,
xTicksToWait表示阻塞的最大时间(Tick Count)。
如果被设为0,无法写入数据时函数会立刻返回;
如果被设为portMAX_DELAY,则会一直阻塞直到有空间可写
返回值 pdPASS:数据成功写入了队列
errQUEUE_FULL:写入失败,因为队列满了。

读队列

使用xQueueReceive()函数读队列,读到一个数据后,队列中该数据会被移除。这个函数有两个版本:在任务中使用、在ISR中使用。函数原型如下:

1
2
3
4
5
6
7
8
9
BaseType_t xQueueReceive( QueueHandle_t xQueue,
void * const pvBuffer,
TickType_t xTicksToWait );

BaseType_t xQueueReceiveFromISR(
QueueHandle_t xQueue,
void *pvBuffer,
BaseType_t *pxTaskWoken
);

参数说明如下:

参数 说明
xQueue 队列句柄,要读哪个队列
pvBuffer bufer指针,队列的数据会被复制到这个buffer
复制多大的数据?在创建队列时已经指定了数据大小
xTicksToWait 果队列空则无法读出数据,可以让任务进入阻塞状态,
xTicksToWait表示阻塞的最大时间(Tick Count)。
如果被设为0,无法读出数据时函数会立刻返回;
如果被设为portMAX_DELAY,则会一直阻塞直到有数据可写
返回值 pdPASS:从队列读出数据入
errQUEUE_EMPTY:读取失败,因为队列空了。

查询

可以查询队列中有多少个数据、有多少空余空间。函数原型如下:

1
2
3
4
5
6
7
8
9
/*
* 返回队列中可用数据的个数
*/
UBaseType_t uxQueueMessagesWaiting( const QueueHandle_t xQueue );

/*
* 返回队列中可用空间的个数
*/
UBaseType_t uxQueueSpacesAvailable( const QueueHandle_t xQueue );

覆盖/偷看

当队列长度为1时,可以使用xQueueOverwrite()xQueueOverwriteFromISR()来覆盖数据。
注意,队列长度必须为1。当队列满时,这些函数会覆盖里面的数据,这也以为着这些函数不会被阻塞。
函数原型如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
/* 覆盖队列
* xQueue: 写哪个队列
* pvItemToQueue: 数据地址
* 返回值: pdTRUE表示成功, pdFALSE表示失败
*/
BaseType_t xQueueOverwrite(
QueueHandle_t xQueue,
const void * pvItemToQueue
);

BaseType_t xQueueOverwriteFromISR(
QueueHandle_t xQueue,
const void * pvItemToQueue,
BaseType_t *pxHigherPriorityTaskWoken
);

如果想让队列中的数据供多方读取,也就是说读取时不要移除数据,要留给后来人。那么可以使用”窥视”,也就是xQueuePeek()xQueuePeekFromISR()。这些函数会从队列中复制出数据,但是不移除数据。这也意味着,如果队列中没有数据,那么”偷看”时会导致阻塞;一旦队列中有数据,以后每次”偷看”都会成功。
函数原型如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
/* 偷看队列
* xQueue: 偷看哪个队列
* pvItemToQueue: 数据地址, 用来保存复制出来的数据
* xTicksToWait: 没有数据的话阻塞一会
* 返回值: pdTRUE表示成功, pdFALSE表示失败
*/
BaseType_t xQueuePeek(
QueueHandle_t xQueue,
void * const pvBuffer,
TickType_t xTicksToWait
);

BaseType_t xQueuePeekFromISR(
QueueHandle_t xQueue,
void *pvBuffer,
);

信号量

前面介绍的队列(queue)可以用于传输数据:在任务之间、任务和中断之间。

有时候我们只需要传递状态,并不需要传递具体的信息,比如:

我的事做完了,通知一下你

卖包子了、卖包子了,做好了1个包子!做好了2个包子!做好了3个包子!

这个停车位我占了,你们只能等着

在这种情况下我们可以使用信号量(semaphore),它更节省内存。

信号量的常规操作

两种信号量的对比

信号量的计数值都有限制:限定了最大值。如果最大值被限定为1,那么它就是二进制信号量;如果最大值不是1,它就是计数型信号量。

差别列表如下:

二进制信号量 技术型信号量
被创建时初始值为0 被创建时初始值可以设定
其他操作是一样的 其他操作是一样的

信号量函数

创建

使用信号量之前,要先创建,得到一个句柄;使用信号量时,要使用句柄来表明使用哪个信号量。

对于二进制信号量、计数型信号量,它们的创建函数不一样:

二进制信号量 计数型信号量
动态创建 xSemaphoreCreateBinary
计数值初始值为0
xSemaphoreCreateCounting
vSemaphoreCreateBinary(过时了)
计数值初始值为1
静态创建 xSemaphoreCreateBinaryStatic xSemaphoreCreateCountingStatic

创建二进制信号量的函数原型如下:

1
2
3
4
5
6
7
8
9
10
11
/* 创建一个二进制信号量,返回它的句柄。
* 此函数内部会分配信号量结构体
* 返回值: 返回句柄,非NULL表示成功
*/
SemaphoreHandle_t xSemaphoreCreateBinary( void );

/* 创建一个二进制信号量,返回它的句柄。
* 此函数无需动态分配内存,所以需要先有一个StaticSemaphore_t结构体,并传入它的指针
* 返回值: 返回句柄,非NULL表示成功
*/
SemaphoreHandle_t xSemaphoreCreateBinaryStatic( StaticSemaphore_t *pxSemaphoreBuffer );

创建计数型信号量的函数原型如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
/* 创建一个计数型信号量,返回它的句柄。
* 此函数内部会分配信号量结构体
* uxMaxCount: 最大计数值
* uxInitialCount: 初始计数值
* 返回值: 返回句柄,非NULL表示成功
*/
SemaphoreHandle_t xSemaphoreCreateCounting(UBaseType_t uxMaxCount, UBaseType_t uxInitialCount);

/* 创建一个计数型信号量,返回它的句柄。
* 此函数无需动态分配内存,所以需要先有一个StaticSemaphore_t结构体,并传入它的指针
* uxMaxCount: 最大计数值
* uxInitialCount: 初始计数值
* pxSemaphoreBuffer: StaticSemaphore_t结构体指针
* 返回值: 返回句柄,非NULL表示成功
*/
SemaphoreHandle_t xSemaphoreCreateCountingStatic( UBaseType_t uxMaxCount,
UBaseType_t uxInitialCount,
StaticSemaphore_t *pxSemaphoreBuffer );

删除

对于动态创建的信号量,不再需要它们时,可以删除它们以回收内存。

vSemaphoreDelete可以用来删除二进制信号量、计数型信号量,函数原型如下:

1
2
3
4
/*
* xSemaphore: 信号量句柄,你要删除哪个信号量
*/
void vSemaphoreDelete( SemaphoreHandle_t xSemaphore );

give/take

二进制信号量、计数型信号量的give、take操作函数是一样的。这些函数也分为2个版本:给任务使用,给ISR使用。列表如下:

在任务中使用 在ISR中使用
give xSemaphoreGive xSemaphoreGiveFromISR
take xSemaphoreTake xSemaphoreTakeFromISR

xSemaphoreGive的函数原型如下:

1
BaseType_t xSemaphoreGive( SemaphoreHandle_t xSemaphore );

xSemaphoreGive函数的参数与返回值列表如下:

参数 说明
xSemaphore 信号量句柄,释放哪个信号量
返回值 pdTRUE表示成功,
如果二进制信号量的计数值已经是1,再次调用此函数则返回失败;
如果计数型信号量的计数值已经是最大值,再次调用此函数则返回失败

pxHigherPriorityTaskWoken的函数原型如下:

1
2
3
4
BaseType_t xSemaphoreGiveFromISR(
SemaphoreHandle_t xSemaphore,
BaseType_t *pxHigherPriorityTaskWoken
);

xSemaphoreGiveFromISR函数的参数与返回值列表如下:

参数 说明
xSemaphore 信号量句柄,释放哪个信号量
pxHigherPriorityTaskWoken 如果释放信号量导致更高优先级的任务变为了就绪态,
则*pxHigherPriorityTaskWoken = pdTRUE
返回值 pdTRUE表示成功,
如果二进制信号量的计数值已经是1,再次调用此函数则返回失败;
如果计数型信号量的计数值已经是最大值,再次调用此函数则返回失败

xSemaphoreTake的函数原型如下:

1
2
3
4
BaseType_t xSemaphoreTake(
SemaphoreHandle_t xSemaphore,
TickType_t xTicksToWait
);

xSemaphoreTake函数的参数与返回值列表如下:

参数 说明
xSemaphore 信号量句柄,获取哪个信号量
xTicksToWait 如果无法马上获得信号量,阻塞一会:
0:不阻塞,马上返回
portMAX_DELAY: 一直阻塞直到成功
其他值: 阻塞的Tick个数,可以使用pdMS_TO_TICKS()来指定阻塞时间为若干ms
返回值 pdTRUE表示成功

xSemaphoreTakeFromISR的函数原型如下:

1
2
3
4
BaseType_t xSemaphoreTakeFromISR(
SemaphoreHandle_t xSemaphore,
BaseType_t *pxHigherPriorityTaskWoken
);

xSemaphoreTakeFromISR函数的参数与返回值列表如下:

参数 说明
xSemaphore 信号量句柄,获取哪个信号量
pxHigherPriorityTaskWoken 如果获取信号量导致更高优先级的任务变为了就绪态,
则*pxHigherPriorityTaskWoken = pdTRUE
返回值 pdTRUE表示成功

互斥量

在多任务系统中,任务A正在使用某个资源,还没用完的情况下任务B也来使用的话,就可能导致问题。

比如对于串口,任务A正使用它来打印,在打印过程中任务B也来打印,客户看到的结果就是A、B的信息混杂在一起。

上述问题的解决方法是:任务A访问这些全局变量、函数代码时,独占它,就是上个锁。这些全局变量、函数代码必须被独占地使用,它们被称为临界资源。

互斥量也被称为互斥锁,使用过程如下:

互斥量初始值为1

任务A想访问临界资源,先获得并占有互斥量,然后开始访问

任务B也想访问临界资源,也要先获得互斥量:被别人占有了,于是阻塞

任务A使用完毕,释放互斥量;任务B被唤醒、得到并占有互斥量,然后开始访问临界资源

任务B使用完毕,释放互斥量

正常来说:在任务A占有互斥量的过程中,任务B、任务C等等,都无法释放互斥量。

但是FreeRTOS未实现这点:任务A占有互斥量的情况下,任务B也可释放互斥量。

函数

创建

互斥量是一种特殊的二进制信号量。

使用互斥量时,先创建、然后去获得、释放它。使用句柄来表示一个互斥量。

创建互斥量的函数有2种:动态分配内存,静态分配内存,函数原型如下:

1
2
3
4
5
6
7
8
9
10
11
/* 创建一个互斥量,返回它的句柄。
* 此函数内部会分配互斥量结构体
* 返回值: 返回句柄,非NULL表示成功
*/
SemaphoreHandle_t xSemaphoreCreateMutex( void );

/* 创建一个互斥量,返回它的句柄。
* 此函数无需动态分配内存,所以需要先有一个StaticSemaphore_t结构体,并传入它的指针
* 返回值: 返回句柄,非NULL表示成功
*/
SemaphoreHandle_t xSemaphoreCreateMutexStatic( StaticSemaphore_t *pxMutexBuffer );

要想使用互斥量,需要在配置文件FreeRTOSConfig.h中定义:

1
#define configUSE_MUTEXES 1

其他函数

要注意的是,互斥量不能在ISR中使用。

各类操作函数,比如删除、give/take,跟一般是信号量是一样的。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
/*
* xSemaphore: 信号量句柄,你要删除哪个信号量, 互斥量也是一种信号量
*/
void vSemaphoreDelete( SemaphoreHandle_t xSemaphore );

/* 释放 */
BaseType_t xSemaphoreGive( SemaphoreHandle_t xSemaphore );

/* 释放(ISR版本) */
BaseType_t xSemaphoreGiveFromISR(
SemaphoreHandle_t xSemaphore,
BaseType_t *pxHigherPriorityTaskWoken
);

/* 获得 */
BaseType_t xSemaphoreTake(
SemaphoreHandle_t xSemaphore,
TickType_t xTicksToWait
);
/* 获得(ISR版本) */
xSemaphoreGiveFromISR(
SemaphoreHandle_t xSemaphore,
BaseType_t *pxHigherPriorityTaskWoken
);

事件组

事件组可以简单地认为就是一个整数:

  • 每一位表示一个事件
  • 每一位事件的含义由程序员决定,比如:Bit0表示用来串口是否就绪,Bit1表示按键是否被按下
  • 这些位,值为1表示事件发生了,值为0表示事件没发生
  • 一个或多个任务、ISR都可以去写这些位;一个或多个任务、ISR都可以去读这些位
  • 可以等待某一位、某些位中的任意一个,也可以等待多位

事件组用一个整数来表示,其中的高8位留给内核使用,只能用其他的位来表示事件。那么这个整数是多少位的?

  • 如果configUSE_16_BIT_TICKS是1,那么这个整数就是16位的,低8位用来表示事件
  • 如果configUSE_16_BIT_TICKS是0,那么这个整数就是32位的,低24位用来表示事件
  • configUSE_16_BIT_TICKS是用来表示Tick Count的,怎么会影响事件组?这只是基于效率来考虑
    • 如果configUSE_16_BIT_TICKS是1,就表示该处理器使用16位更高效,所以事件组也使用16位
    • 如果configUSE_16_BIT_TICKS是0,就表示该处理器使用32位更高效,所以事件组也使用32位

事件组的操作

事件组和队列、信号量等不太一样,主要集中在2个地方:

  • 唤醒谁?
    • 队列、信号量:事件发生时,只会唤醒一个任务
    • 事件组:事件发生时,会唤醒所有符号条件的任务,简单地说它有”广播”的作用
  • 是否清除事件?
    • 队列、信号量:是消耗型的资源,队列的数据被读走就没了;信号量被获取后就减少了
    • 事件组:被唤醒的任务有两个选择,可以让事件保留不动,也可以清除事件

以上图为列,事件组的常规操作如下:

  • 先创建事件组

  • 任务C、D等待事件:

    • 等待什么事件?可以等待某一位、某些位中的任意一个,也可以等待多位。简单地说就是”或”、”与”的关系。
    • 得到事件时,要不要清除?可选择清除、不清除。
  • 任务A、B产生事件:设置事件组里的某一位、某些位

事件组函数

创建

使用事件组之前,要先创建,得到一个句柄;使用事件组时,要使用句柄来表明使用哪个事件组。

有两种创建方法:动态分配内存、静态分配内存。函数原型如下:

1
2
3
4
5
6
7
8
9
10
11
/* 创建一个事件组,返回它的句柄。
* 此函数内部会分配事件组结构体
* 返回值: 返回句柄,非NULL表示成功
*/
EventGroupHandle_t xEventGroupCreate( void );

/* 创建一个事件组,返回它的句柄。
* 此函数无需动态分配内存,所以需要先有一个StaticEventGroup_t结构体,并传入它的指针
* 返回值: 返回句柄,非NULL表示成功
*/
EventGroupHandle_t xEventGroupCreateStatic( StaticEventGroup_t * pxEventGroupBuffer );

删除

对于动态创建的事件组,不再需要它们时,可以删除它们以回收内存。

vEventGroupDelete可以用来删除事件组,函数原型如下:

1
2
3
4
/*
* xEventGroup: 事件组句柄,你要删除哪个事件组
*/
void vEventGroupDelete( EventGroupHandle_t xEventGroup )

设置事件

可以设置事件组的某个位、某些位,使用的函数有2个:

  • 在任务中使用xEventGroupSetBits()
  • 在ISR中使用xEventGroupSetBitsFromISR()

有一个或多个任务在等待事件,如果这些事件符合这些任务的期望,那么任务还会被唤醒。

函数原型如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
/* 设置事件组中的位
* xEventGroup: 哪个事件组
* uxBitsToSet: 设置哪些位?
* 如果uxBitsToSet的bitX, bitY为1, 那么事件组中的bitX, bitY被设置为1
* 可以用来设置多个位,比如 0x15 就表示设置bit4, bit2, bit0
* 返回值: 返回原来的事件值(没什么意义, 因为很可能已经被其他任务修改了)
*/
EventBits_t xEventGroupSetBits( EventGroupHandle_t xEventGroup,
const EventBits_t uxBitsToSet );


/* 设置事件组中的位
* xEventGroup: 哪个事件组
* uxBitsToSet: 设置哪些位?
* 如果uxBitsToSet的bitX, bitY为1, 那么事件组中的bitX, bitY被设置为1
* 可以用来设置多个位,比如 0x15 就表示设置bit4, bit2, bit0
* pxHigherPriorityTaskWoken: 有没有导致更高优先级的任务进入就绪态? pdTRUE-有, pdFALSE-没有
* 返回值: pdPASS-成功, pdFALSE-失败
*/
BaseType_t xEventGroupSetBitsFromISR( EventGroupHandle_t xEventGroup,
const EventBits_t uxBitsToSet,
BaseType_t * pxHigherPriorityTaskWoken );

值得注意的是,ISR中的函数,比如队列函数xQueueSendToBackFromISR、信号量函数xSemaphoreGiveFromISR,它们会唤醒某个任务,最多只会唤醒1个任务。

但是设置事件组时,有可能导致多个任务被唤醒,这会带来很大的不确定性。所以xEventGroupSetBitsFromISR函数不是直接去设置事件组,而是给一个FreeRTOS后台任务(daemon task)发送队列数据,由这个任务来设置事件组。

如果后台任务的优先级比当前被中断的任务优先级高,xEventGroupSetBitsFromISR会设置*pxHigherPriorityTaskWoken为pdTRUE。

如果daemon task成功地把队列数据发送给了后台任务,那么xEventGroupSetBitsFromISR的返回值就是pdPASS。

等待事件

使用xEventGroupWaitBits来等待事件,可以等待某一位、某些位中的任意一个,也可以等待多位;等到期望的事件后,还可以清除某些位。

函数原型如下:

1
2
3
4
5
EventBits_t xEventGroupWaitBits( EventGroupHandle_t xEventGroup,
const EventBits_t uxBitsToWaitFor,
const BaseType_t xClearOnExit,
const BaseType_t xWaitForAllBits,
TickType_t xTicksToWait );

先引入一个概念:unblock condition。一个任务在等待事件发生时,它处于阻塞状态;当期望的时间发生时,这个状态就叫”unblock condition”,非阻塞条件,或称为”非阻塞条件成立”;当”非阻塞条件成立”后,该任务就可以变为就绪态。

函数参数说明列表如下:

参数 说明
xEventGroup 等待哪个事件组?
uxBitsToWaitFor 等待哪些位?哪些位要被测试?
xWaitForAllBits 怎么测试?是”AND”还是”OR”?
pdTRUE: 等待的位,全部为1;
pdFALSE: 等待的位,某一个为1即可
xClearOnExit 函数提出前是否要清除事件?
pdTRUE: 清除uxBitsToWaitFor指定的位
pdFALSE: 不清除
xTicksToWait 如果期待的事件未发生,阻塞多久。
可以设置为0:判断后即刻返回;
可设置为portMAX_DELAY:一定等到成功才返回;
可以设置为期望的Tick Count,一般用pdMS_TO_TICKS()把ms转换为Tick Count
返回值 返回的是事件值,
如果期待的事件发生了,返回的是”非阻塞条件成立”时的事件值;
如果是超时退出,返回的是超时时刻的事件值。

举例如下:

事件组的值 uxBitsToWaitFor xWaitForAllBits 说明
0100 0101 pdTRUE 任务期望bit0,bit2都为1,
当前值只有bit2满足,任务进入阻塞态;
当事件组中bit0,bit2都为1时退出阻塞态
0100 0110 pdFALSE 任务期望bit0,bit2某一个为1,
当前值满足,所以任务成功退出
0100 0110 pdTRUE 任务期望bit1,bit2都为1,
当前值不满足,任务进入阻塞态;
当事件组中bit1,bit2都为1时退出阻塞态

你可以使用xEventGroupWaitBits()等待期望的事件,它发生之后再使用xEventGroupClearBits()来清除。但是这两个函数之间,有可能被其他任务或中断抢占,它们可能会修改事件组。

可以使用设置xClearOnExit为pdTRUE,使得对事件组的测试、清零都在xEventGroupWaitBits()函数内部完成,这是一个原子操作。

同步点

有一个事情需要多个任务协同,比如:

  • 任务A:炒菜
  • 任务B:买酒
  • 任务C:摆台
  • A、B、C做好自己的事后,还要等别人做完;大家一起做完,才可开饭

使用xEventGroupSync()函数可以同步多个任务:

  • 可以设置某位、某些位,表示自己做了什么事
  • 可以等待某位、某些位,表示要等等其他任务
  • 期望的时间发生后,xEventGroupSync()才会成功返回。
  • xEventGroupSync成功返回后,会清除事件

xEventGroupSync函数原型如下:

1
2
3
4
EventBits_t xEventGroupSync(    EventGroupHandle_t xEventGroup,
const EventBits_t uxBitsToSet,
const EventBits_t uxBitsToWaitFor,
TickType_t xTicksToWait );

参数列表如下:

参数 说明
xEventGroup 哪个事件组?
uxBitsToSet 要设置哪些事件?我完成了哪些事件?
比如0x05(二进制为0101)会导致事件组的bit0,bit2被设置为1
uxBitsToWaitFor 等待那个位、哪些位?
比如0x15(二级制10101),表示要等待bit0,bit2,bit4都为1
xTicksToWait 如果期待的事件未发生,阻塞多久。
可以设置为0:判断后即刻返回;
可设置为portMAX_DELAY:一定等到成功才返回;
可以设置为期望的Tick Count,一般用pdMS_TO_TICKS()把ms转换为Tick Count
返回值 返回的是事件值,
如果期待的事件发生了,返回的是”非阻塞条件成立”时的事件值;
如果是超时退出,返回的是超时时刻的事件值。

任务通知

所谓”任务通知”,你可以反过来读”通知任务”。

使用任务通知时,任务结构体TCB中就包含了内部对象,可以直接接收别人发过来的”通知”:

优势及限制

任务通知的优势:

  • 效率更高:使用任务通知来发送事件、数据给某个任务时,效率更高。比队列、信号量、事件组都有大的优势。
  • 更节省内存:使用其他方法时都要先创建对应的结构体,使用任务通知时无需额外创建结构体。

任务通知的限制:

  • 不能发送数据给ISR:
    ISR并没有任务结构体,所以无法使用任务通知的功能给ISR发送数据。但是ISR可以使用任务通知的功能,发数据给任务。
  • 数据只能给该任务独享
    使用队列、信号量、事件组时,数据保存在这些结构体中,其他任务、ISR都可以访问这些数据。使用任务通知时,数据存放入目标任务中,只有它可以访问这些数据。
    在日常工作中,这个限制影响不大。因为很多场合是从多个数据源把数据发给某个任务,而不是把一个数据源的数据发给多个任务。
  • 无法缓冲数据
    使用队列时,假设队列深度为N,那么它可以保持N个数据。
    使用任务通知时,任务结构体中只有一个任务通知值,只能保持一个数据。
  • 无法广播给多个任务
    使用事件组可以同时给多个任务发送事件。
    使用任务通知,只能发个一个任务。
  • 如果发送受阻,发送方无法进入阻塞状态等待
    假设队列已经满了,使用xQueueSendToBack()给队列发送数据时,任务可以进入阻塞状态等待发送完成。
    使用任务通知时,即使对方无法接收数据,发送方也无法阻塞等待,只能即刻返回错误。

通知状态和通知值

每个任务都有一个结构体:TCB(Task Control Block),里面有2个成员:

  • 一个是uint8_t类型,用来表示通知状态
  • 一个是uint32_t类型,用来表示通知值
1
2
3
4
5
6
7
8
typedef struct tskTaskControlBlock
{
......
/* configTASK_NOTIFICATION_ARRAY_ENTRIES = 1 */
volatile uint32_t ulNotifiedValue[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
volatile uint8_t ucNotifyState[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
......
} tskTCB;

通知状态有3种取值:

  • taskNOT_WAITING_NOTIFICATION:任务没有在等待通知
  • taskWAITING_NOTIFICATION:任务在等待通知
  • taskNOTIFICATION_RECEIVED:任务接收到了通知,也被称为pending(有数据了,待处理)
1
2
3
#define taskNOT_WAITING_NOTIFICATION              ( ( uint8_t ) 0 )  /* 也是初始状态 */
#define taskWAITING_NOTIFICATION ( ( uint8_t ) 1 )
#define taskNOTIFICATION_RECEIVED ( ( uint8_t ) 2 )

通知值可以有很多种类型:

  • 计数值
  • 位(类似事件组)
  • 任意数值

任务通知的使用

使用任务通知,可以实现轻量级的队列(长度为1)、邮箱(覆盖的队列)、计数型信号量、二进制信号量、事件组。

两类函数

任务通知有2套函数,简化版、专业版,列表如下:

  • 简化版函数的使用比较简单,它实际上也是使用专业版函数实现的
  • 专业版函数支持很多参数,可以实现很多功能
简化版 专业版
发出通知 xTaskNotifyGive
vTaskNotifyGiveFromISR
xTaskNotify
xTaskNotifyFromISR
取出通知 ulTaskNotifyTake xTaskNotifyWait

xTaskNotifyGive/ulTaskNotifyTake

在任务中使用xTaskNotifyGive函数,在ISR中使用vTaskNotifyGiveFromISR函数,都是直接给其他任务发送通知:

  • 使得通知值加一
  • 并使得通知状态变为”pending”,也就是taskNOTIFICATION_RECEIVED,表示有数据了、待处理

可以使用ulTaskNotifyTake函数来取出通知值:

  • 如果通知值等于0,则阻塞(可以指定超时时间)
  • 当通知值大于0时,任务从阻塞态进入就绪态
  • 在ulTaskNotifyTake返回之前,还可以做些清理工作:把通知值减一,或者把通知值清零

使用ulTaskNotifyTake函数可以实现轻量级的、高效的二进制信号量、计数型信号量。

这几个函数的原型如下:

1
2
3
4
5
BaseType_t xTaskNotifyGive( TaskHandle_t xTaskToNotify );

void vTaskNotifyGiveFromISR( TaskHandle_t xTaskHandle, BaseType_t *pxHigherPriorityTaskWoken );

uint32_t ulTaskNotifyTake( BaseType_t xClearCountOnExit, TickType_t xTicksToWait );

xTaskNotifyGive函数的参数说明如下:

参数 说明
xTaskToNotify 任务句柄(创建任务时得到),给哪个任务发通知
返回值 必定返回pdPASS

vTaskNotifyGiveFromISR函数的参数说明如下:

参数 说明
xTaskHandle 任务句柄(创建任务时得到),给哪个任务发通知
pxHigherPriorityTaskWoken 被通知的任务,可能正处于阻塞状态。
此函数发出通知后,会把它从阻塞状态切换为就绪态。
如果被唤醒的任务的优先级,高于当前任务的优先级,
则”*pxHigherPriorityTaskWoken”被设置为pdTRUE,
这表示在中断返回之前要进行任务切换。

ulTaskNotifyTake函数的参数说明如下:

参数 说明
xClearCountOnExit 函数返回前是否清零:
pdTRUE:把通知值清零
pdFALSE:如果通知值大于0,则把通知值减一
xTicksToWait 任务进入阻塞态的超时时间,它在等待通知值大于0。
0:不等待,即刻返回;
portMAX_DELAY:一直等待,直到通知值大于0;
其他值:Tick Count,可以用pdMS_TO_TICKS()把ms转换为Tick Count
返回值 函数返回之前,在清零或减一之前的通知值。
如果xTicksToWait非0,则返回值有2种情况:
1. 大于0:在超时前,通知值被增加了
2. 等于0:一直没有其他任务增加通知值,最后超时返回0

xTaskNotify/xTaskNotifyWait

xTaskNotify 函数功能更强大,可以使用不同参数实现各类功能,比如:

  • 让接收任务的通知值加一:这时xTaskNotify()等同于xTaskNotifyGive()
  • 设置接收任务的通知值的某一位、某些位,这就是一个轻量级的、更高效的事件组
  • 把一个新值写入接收任务的通知值:上一次的通知值被读走后,写入才成功。这就是轻量级的、长度为1的队列
  • 用一个新值覆盖接收任务的通知值:无论上一次的通知值是否被读走,覆盖都成功。类似xQueueOverwrite()函数,这就是轻量级的邮箱。

xTaskNotify()xTaskNotifyGive()更灵活、强大,使用上也就更复杂。xTaskNotifyFromISR()是它对应的ISR版本。

这两个函数用来发出任务通知,使用哪个函数来取出任务通知呢?

使用xTaskNotifyWait()函数!它比ulTaskNotifyTake()更复杂:

  • 可以让任务等待(可以加上超时时间),等到任务状态为”pending”(也就是有数据)
  • 还可以在函数进入、退出时,清除通知值的指定位

这几个函数的原型如下:

1
2
3
4
5
6
7
8
9
10
11
BaseType_t xTaskNotify( TaskHandle_t xTaskToNotify, uint32_t ulValue, eNotifyAction eAction );

BaseType_t xTaskNotifyFromISR( TaskHandle_t xTaskToNotify,
uint32_t ulValue,
eNotifyAction eAction,
BaseType_t *pxHigherPriorityTaskWoken );

BaseType_t xTaskNotifyWait( uint32_t ulBitsToClearOnEntry,
uint32_t ulBitsToClearOnExit,
uint32_t *pulNotificationValue,
TickType_t xTicksToWait );

xTaskNotify函数的参数说明如下:

参数 说明
xTaskToNotify 任务句柄(创建任务时得到),给哪个任务发通知
ulValue 怎么使用ulValue,由eAction参数决定
eAction 见下表
返回值 pdPASS:成功,大部分调用都会成功
pdFAIL:只有一种情况会失败,当eAction为eSetValueWithoutOverwrite,
并且通知状态为”pending”(表示有新数据未读),这时就会失败。

eNotifyAction参数说明:

eNotifyAction取值 说明
eNoAction 仅仅是更新通知状态为”pending”,未使用ulValue。
这个选项相当于轻量级的、更高效的二进制信号量。
eSetBits 通知值 = 原来的通知值 | ulValue,按位或。
相当于轻量级的、更高效的事件组。
eIncrement 通知值 = 原来的通知值 + 1,未使用ulValue。
相当于轻量级的、更高效的二进制信号量、计数型信号量。
相当于xTaskNotifyGive()函数。
eSetValueWithoutOverwrite 不覆盖。
如果通知状态为”pending”(表示有数据未读),
则此次调用xTaskNotify不做任何事,返回pdFAIL。
如果通知状态不是”pending”(表示没有新数据),
则:通知值 = ulValue。
eSetValueWithOverwrite 覆盖。
无论如何,不管通知状态是否为”pendng”,
通知值 = ulValue。

xTaskNotifyFromISR函数跟xTaskNotify很类似,就多了最后一个参数pxHigherPriorityTaskWoken。在很多ISR函数中,这个参数的作用都是类似的,使用场景如下:

  • 被通知的任务,可能正处于阻塞状态
  • xTaskNotifyFromISR函数发出通知后,会把接收任务从阻塞状态切换为就绪态
  • 如果被唤醒的任务的优先级,高于当前任务的优先级,则”*pxHigherPriorityTaskWoken”被设置为pdTRUE,这表示在中断返回之前要进行任务切换。

xTaskNotifyWait函数列表如下:

参数 说明
ulBitsToClearOnEntry 在xTaskNotifyWait入口处,要清除通知值的哪些位?
通知状态不是”pending”的情况下,才会清除。
它的本意是:我想等待某些事件发生,所以先把”旧数据”的某些位清零。
能清零的话:通知值 = 通知值 & ~(ulBitsToClearOnEntry)。
比如传入0x01,表示清除通知值的bit0;
传入0xffffffff即ULONG_MAX,表示清除所有位,即把值设置为0
ulBitsToClearOnExit 在xTaskNotifyWait出口处,如果不是因为超时推出,而是因为得到了数据而退出时:
通知值 = 通知值 & ~(ulBitsToClearOnExit)。
在清除某些位之前,通知值先被赋给”*pulNotificationValue”。
比如入0x03,表示清除通知值的bit0、bit1;
传入0xffffffff即ULONG_MAX,表示清除所有位,即把值设置为0
pulNotificationValue 用来取出通知值。
在函数退出时,使用ulBitsToClearOnExit清除之前,把通知值赋给”*pulNotificationValue”。
如果不需要取出通知值,可以设为NULL。
xTicksToWait 任务进入阻塞态的超时时间,它在等待通知状态变为”pending”。
0:不等待,即刻返回;
portMAX_DELAY:一直等待,直到通知状态变为”pending”;
其他值:Tick Count,可以用pdMS_TO_TICKS()把ms转换为Tick Count
返回值 1. pdPASS:成功
这表示xTaskNotifyWait成功获得了通知:
可能是调用函数之前,通知状态就是”pending”;
也可能是在阻塞期间,通知状态变为了”pending”。
2. pdFAIL:没有得到通知。

软件定时器

软件定时器的特性

我们在手机上添加闹钟时,需要指定时间、指定类型(一次性的,还是周期性的)、指定做什么事;还有一些过时的、不再使用的闹钟。

使用定时器跟使用手机闹钟是类似的:

  • 指定时间:启动定时器和运行回调函数,两者的间隔被称为定时器的周期(period)。
  • 指定类型,定时器有两种类型:
    • 一次性(One-shot timers):
      这类定时器启动后,它的回调函数只会被调用一次;
      可以手工再次启动它,但是不会自动启动它。
    • 自动加载定时器(Auto-reload timers ):
      这类定时器启动后,时间到之后它会自动启动它;
      这使得回调函数被周期性地调用。
  • 指定要做什么事,就是指定回调函数

实际的闹钟分为:有效、无效两类。软件定时器也是类似的,它由两种状态:

  • 运行(Running、Active):运行态的定时器,当指定时间到达之后,它的回调函数会被调用
  • 冬眠(Dormant):冬眠态的定时器还可以通过句柄来访问它,但是它不再运行,它的回调函数不会被调用

定时器运行情况示例如下:

  • Timer1:它是一次性的定时器,在t1启动,周期是6个Tick。经过6个tick后,在t7执行回调函数。它的回调函数只会被执行一次,然后该定时器进入冬眠状态。
  • Timer2:它是自动加载的定时器,在t1启动,周期是5个Tick。每经过5个tick它的回调函数都被执行,比如在t6、t11、t16都会执行。

软件定时器的上下文

守护任务

要理解软件定时器API函数的参数,特别是里面的xTicksToWait,需要知道定时器执行的过程。

FreeRTOS中有一个Tick中断,软件定时器基于Tick来运行。在哪里执行定时器函数?第一印象就是在Tick中断里执行:

  • 在Tick中断中判断定时器是否超时
  • 如果超时了,调用它的回调函数

FreeRTOS是RTOS,它不允许在内核、在中断中执行不确定的代码:如果定时器函数很耗时,会影响整个系统。

所以,FreeRTOS中,不在Tick中断中执行定时器函数。

在哪里执行?在某个任务里执行,这个任务就是:RTOS Damemon Task,RTOS守护任务。以前被称为”Timer server”,但是这个任务要做并不仅仅是定时器相关,所以改名为:RTOS Damemon Task。

当FreeRTOS的配置项configUSE_TIMERS被设置为1时,在启动调度器时,会自动创建RTOS Damemon Task。

我们自己编写的任务函数要使用定时器时,是通过”定时器命令队列”(timer command queue)和守护任务交互,如下图所示:

image-20210809193524596

守护任务的优先级为:configTIMER_TASK_PRIORITY;定时器命令队列的长度为configTIMER_QUEUE_LENGTH。

守护任务的调度

守护任务的调度,跟普通的任务并无差别。当守护任务是当前优先级最高的就绪态任务时,它就可以运行。它的工作有两类:

  • 处理命令:从命令队列里取出命令、处理
  • 执行定时器的回调函数

能否及时处理定时器的命令、能否及时执行定时器的回调函数,严重依赖于守护任务的优先级。下面使用2个例子来演示。

例子1:守护任务的优先性级较低

  • t1:Task1处于运行态,守护任务处于阻塞态。
    守护任务在这两种情况下会退出阻塞态切换为就绪态:命令队列中有数据、某个定时器超时了。
    至于守护任务能否马上执行,取决于它的优先级。

  • t2:Task1调用xTimerStart()
    要注意的是,xTimerStart()只是把”start timer”的命令发给”定时器命令队列”,使得守护任务退出阻塞态。
    在本例中,Task1的优先级高于守护任务,所以守护任务无法抢占Task1。

  • t3:Task1执行完xTimerStart()
    但是定时器的启动工作由守护任务来实现,所以xTimerStart()返回并不表示定时器已经被启动了。

  • t4:Task1由于某些原因进入阻塞态,现在轮到守护任务运行。
    守护任务从队列中取出”start timer”命令,启动定时器。

  • t5:守护任务处理完队列中所有的命令,再次进入阻塞态。Idel任务时优先级最高的就绪态任务,它执行。

  • 注意:假设定时器在后续某个时刻tX超时了,超时时间是”tX-t2”,而非”tX-t4”,从xTimerStart()函数被调用时算起。

例子2:守护任务的优先性级较高

  • t1:Task1处于运行态,守护任务处于阻塞态。
    守护任务在这两种情况下会退出阻塞态切换为就绪态:命令队列中有数据、某个定时器超时了。
    至于守护任务能否马上执行,取决于它的优先级。

  • t2:Task1调用xTimerStart()
    要注意的是,xTimerStart()只是把”start timer”的命令发给”定时器命令队列”,使得守护任务退出阻塞态。
    在本例中,守护任务的优先级高于Task1,所以守护任务抢占Task1,守护任务开始处理命令队列。
    Task1在执行xTimerStart()的过程中被抢占,这时它无法完成此函数。

  • t3:守护任务处理完命令队列中所有的命令,再次进入阻塞态。
    此时Task1是优先级最高的就绪态任务,它开始执行。

  • t4:Task1之前被守护任务抢占,对xTimerStart()的调用尚未返回。现在开始继续运行次函数、返回。

  • t5:Task1由于某些原因进入阻塞态,进入阻塞态。Idel任务时优先级最高的就绪态任务,它执行。

image-20210809161518141

注意,定时器的超时时间是基于调用xTimerStart()的时刻tX,而不是基于守护任务处理命令的时刻tY。假设超时时间是10个Tick,超时时间是”tX+10”,而非”tY+10”。

回调函数

定时器的回调函数的原型如下:

1
void ATimerCallback( TimerHandle_t xTimer );

定时器的回调函数是在守护任务中被调用的,守护任务不是专为某个定时器服务的,它还要处理其他定时器。

所以,定时器的回调函数不要影响其他人:

  • 回调函数要尽快实行,不能进入阻塞状态

  • 不要调用会导致阻塞的API函数,比如vTaskDelay()

  • 可以调用xQueueReceive()之类的函数,但是超时时间要设为0:即刻返回,不可阻塞

软件定时器的函数

根据定时器的状态转换图,就可以知道所涉及的函数:

创建

要使用定时器,需要先创建它,得到它的句柄。

有两种方法创建定时器:动态分配内存、静态分配内存。函数原型如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
/* 使用动态分配内存的方法创建定时器
* pcTimerName:定时器名字, 用处不大, 尽在调试时用到
* xTimerPeriodInTicks: 周期, 以Tick为单位
* uxAutoReload: 类型, pdTRUE表示自动加载, pdFALSE表示一次性
* pvTimerID: 回调函数可以使用此参数, 比如分辨是哪个定时器
* pxCallbackFunction: 回调函数
* 返回值: 成功则返回TimerHandle_t, 否则返回NULL
*/
TimerHandle_t xTimerCreate( const char * const pcTimerName,
const TickType_t xTimerPeriodInTicks,
const UBaseType_t uxAutoReload,
void * const pvTimerID,
TimerCallbackFunction_t pxCallbackFunction );

/* 使用静态分配内存的方法创建定时器
* pcTimerName:定时器名字, 用处不大, 尽在调试时用到
* xTimerPeriodInTicks: 周期, 以Tick为单位
* uxAutoReload: 类型, pdTRUE表示自动加载, pdFALSE表示一次性
* pvTimerID: 回调函数可以使用此参数, 比如分辨是哪个定时器
* pxCallbackFunction: 回调函数
* pxTimerBuffer: 传入一个StaticTimer_t结构体, 将在上面构造定时器
* 返回值: 成功则返回TimerHandle_t, 否则返回NULL
*/
TimerHandle_t xTimerCreateStatic(const char * const pcTimerName,
TickType_t xTimerPeriodInTicks,
UBaseType_t uxAutoReload,
void * pvTimerID,
TimerCallbackFunction_t pxCallbackFunction,
StaticTimer_t *pxTimerBuffer );

回调函数的类型是:

1
2
3
void ATimerCallback( TimerHandle_t xTimer );

typedef void (* TimerCallbackFunction_t)( TimerHandle_t xTimer );

删除

动态分配的定时器,不再需要时可以删除掉以回收内存。删除函数原型如下:

1
2
3
4
5
6
7
/* 删除定时器
* xTimer: 要删除哪个定时器
* xTicksToWait: 超时时间
* 返回值: pdFAIL表示"删除命令"在xTicksToWait个Tick内无法写入队列
* pdPASS表示成功
*/
BaseType_t xTimerDelete( TimerHandle_t xTimer, TickType_t xTicksToWait );

定时器的很多API函数,都是通过发送”命令”到命令队列,由守护任务来实现。

如果队列满了,”命令”就无法即刻写入队列。我们可以指定一个超时时间xTicksToWait,等待一会。

启动/停止

启动定时器就是设置它的状态为运行态(Running、Active)。

停止定时器就是设置它的状态为冬眠(Dormant),让它不能运行。

涉及的函数原型如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
/* 启动定时器
* xTimer: 哪个定时器
* xTicksToWait: 超时时间
* 返回值: pdFAIL表示"启动命令"在xTicksToWait个Tick内无法写入队列
* pdPASS表示成功
*/
BaseType_t xTimerStart( TimerHandle_t xTimer, TickType_t xTicksToWait );

/* 启动定时器(ISR版本)
* xTimer: 哪个定时器
* pxHigherPriorityTaskWoken: 向队列发出命令使得守护任务被唤醒,
* 如果守护任务的优先级比当前任务的高,
* 则"*pxHigherPriorityTaskWoken = pdTRUE",
* 表示需要进行任务调度
* 返回值: pdFAIL表示"启动命令"无法写入队列
* pdPASS表示成功
*/
BaseType_t xTimerStartFromISR( TimerHandle_t xTimer,
BaseType_t *pxHigherPriorityTaskWoken );

/* 停止定时器
* xTimer: 哪个定时器
* xTicksToWait: 超时时间
* 返回值: pdFAIL表示"停止命令"在xTicksToWait个Tick内无法写入队列
* pdPASS表示成功
*/
BaseType_t xTimerStop( TimerHandle_t xTimer, TickType_t xTicksToWait );

/* 停止定时器(ISR版本)
* xTimer: 哪个定时器
* pxHigherPriorityTaskWoken: 向队列发出命令使得守护任务被唤醒,
* 如果守护任务的优先级比当前任务的高,
* 则"*pxHigherPriorityTaskWoken = pdTRUE",
* 表示需要进行任务调度
* 返回值: pdFAIL表示"停止命令"无法写入队列
* pdPASS表示成功
*/
BaseType_t xTimerStopFromISR( TimerHandle_t xTimer,
BaseType_t *pxHigherPriorityTaskWoken );

注意,这些函数的xTicksToWait表示的是,把命令写入命令队列的超时时间。命令队列可能已经满了,无法马上把命令写入队列里,可以等待一会。

xTicksToWait不是定时器本身的超时时间,不是定时器本身的”周期”。

创建定时器时,设置了它的周期(period)。xTimerStart()函数是用来启动定时器。假设调用xTimerStart()的时刻是tX,定时器的周期是n,那么在tX+n时刻定时器的回调函数被调用。

如果定时器已经被启动,但是它的函数尚未被执行,再次执行xTimerStart()函数相当于执行xTimerReset(),重新设定它的启动时间。

复位

从定时器的状态转换图可以知道,使用xTimerReset()函数可以让定时器的状态从冬眠态转换为运行态,相当于使用xTimerStart()函数。

如果定时器已经处于运行态,使用xTimerReset()函数就相当于重新确定超时时间。假设调用xTimerReset()的时刻是tX,定时器的周期是n,那么tX+n就是重新确定的超时时间。

复位函数的原型如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/* 复位定时器
* xTimer: 哪个定时器
* xTicksToWait: 超时时间
* 返回值: pdFAIL表示"复位命令"在xTicksToWait个Tick内无法写入队列
* pdPASS表示成功
*/
BaseType_t xTimerReset( TimerHandle_t xTimer, TickType_t xTicksToWait );

/* 复位定时器(ISR版本)
* xTimer: 哪个定时器
* pxHigherPriorityTaskWoken: 向队列发出命令使得守护任务被唤醒,
* 如果守护任务的优先级比当前任务的高,
* 则"*pxHigherPriorityTaskWoken = pdTRUE",
* 表示需要进行任务调度
* 返回值: pdFAIL表示"停止命令"无法写入队列
* pdPASS表示成功
*/
BaseType_t xTimerResetFromISR( TimerHandle_t xTimer,
BaseType_t *pxHigherPriorityTaskWoken );

修改周期

从定时器的状态转换图可以知道,使用xTimerChangePeriod()函数,处理能修改它的周期外,还可以让定时器的状态从冬眠态转换为运行态。

修改定时器的周期时,会使用新的周期重新计算它的超时时间。假设调用xTimerChangePeriod()函数的时间tX,新的周期是n,则tX+n就是新的超时时间。

相关函数的原型如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
/* 修改定时器的周期
* xTimer: 哪个定时器
* xNewPeriod: 新周期
* xTicksToWait: 超时时间, 命令写入队列的超时时间
* 返回值: pdFAIL表示"修改周期命令"在xTicksToWait个Tick内无法写入队列
* pdPASS表示成功
*/
BaseType_t xTimerChangePeriod( TimerHandle_t xTimer,
TickType_t xNewPeriod,
TickType_t xTicksToWait );

/* 修改定时器的周期
* xTimer: 哪个定时器
* xNewPeriod: 新周期
* pxHigherPriorityTaskWoken: 向队列发出命令使得守护任务被唤醒,
* 如果守护任务的优先级比当前任务的高,
* 则"*pxHigherPriorityTaskWoken = pdTRUE",
* 表示需要进行任务调度
* 返回值: pdFAIL表示"修改周期命令"在xTicksToWait个Tick内无法写入队列
* pdPASS表示成功
*/
BaseType_t xTimerChangePeriodFromISR( TimerHandle_t xTimer,
TickType_t xNewPeriod,
BaseType_t *pxHigherPriorityTaskWoken );

定时器ID

定时器的结构体如下,里面有一项pvTimerID,它就是定时器ID:

怎么使用定时器ID,完全由程序来决定:

  • 可以用来标记定时器,表示自己是什么定时器
  • 可以用来保存参数,给回调函数使用

它的初始值在创建定时器时由xTimerCreate()这类函数传入,后续可以使用这些函数来操作:

  • 更新ID:使用vTimerSetTimerID()函数
  • 查询ID:查询pvTimerGetTimerID()函数

这两个函数不涉及命令队列,它们是直接操作定时器结构体。

函数原型如下:

1
2
3
4
5
6
7
8
9
10
11
12
/* 获得定时器的ID
* xTimer: 哪个定时器
* 返回值: 定时器的ID
*/
void *pvTimerGetTimerID( TimerHandle_t xTimer );

/* 设置定时器的ID
* xTimer: 哪个定时器
* pvNewID: 新ID
* 返回值: 无
*/
void vTimerSetTimerID( TimerHandle_t xTimer, void *pvNewID );

中断管理

两套API函数

为什么需要两套API

在任务函数中,我们可以调用各类API函数,比如队列操作函数:xQueueSendToBack。但是在ISR中使用这个函数会导致问题,应该使用另一个函数:xQueueSendToBackFromISR,它的函数名含有后缀”FromISR”,表示”从ISR中给队列发送数据”。

FreeRTOS中很多API函数都有两套:一套在任务中使用,另一套在ISR中使用。后者的函数名含有”FromISR”后缀。

为什么要引入两套API函数?

  • 很多API函数会导致任务计入阻塞状态:
    • 运行这个函数的任务进入阻塞状态
    • 比如写队列时,如果队列已满,可以进入阻塞状态等待一会
  • ISR调用API函数时,ISR不是”任务”,ISR不能进入阻塞状态
  • 所以,在任务中、在ISR中,这些函数的功能是有差别的

为什么不使用同一套函数,比如在函数里面分辨当前调用者是任务还是ISR呢?示例代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
BaseType_t xQueueSend(...)
{
if (is_in_isr())
{
/* 把数据放入队列 */

/* 不管是否成功都直接返回 */
}
else /* 在任务中 */
{
/* 把数据放入队列 */
/* 不成功就等待一会再重试 */
}
}

FreeRTOS使用两套函数,而不是使用一套函数,是因为有如下好处:

  • 使用同一套函数的话,需要增加额外的判断代码、增加额外的分支,是的函数更长、更复杂、难以测试

  • 在任务、ISR中调用时,需要的参数不一样,比如:

    • 在任务中调用:需要指定超时时间,表示如果不成功就阻塞一会
    • 在ISR中调用:不需要指定超时时间,无论是否成功都要即刻返回
    • 如果强行把两套函数揉在一起,会导致参数臃肿、无效
  • 移植FreeRTOS时,还需要提供监测上下文的函数,比如is_in_isr()

  • 有些处理器架构没有办法轻易分辨当前是处于任务中,还是处于ISR中,就需要额外添加更多、更复杂的代码

使用两套函数可以让程序更高效,但是也有一些缺点,比如你要使用第三方库函数时,即会在任务中调用它,也会在ISR总调用它。这个第三方库函数用到了FreeRTOS的API函数,你无法修改库函数。这个问题可以解决:

  • 把中断的处理推迟到任务中进行(Defer interrupt processing),在任务中调用库函数
  • 尝试在库函数中使用”FromISR”函数:
    • 在任务中、在ISR中都可以调用”FromISR”函数
    • 反过来就不行,非FromISR函数无法在ISR中使用
  • 第三方库函数也许会提供OS抽象层,自行判断当前环境是在任务还是在ISR中,分别调用不同的函数

两套API函数列表

类型 在任务中 在ISR中
队列(queue) xQueueSendToBack xQueueSendToBackFromISR
xQueueSendToFront xQueueSendToFrontFromISR
xQueueReceive xQueueReceiveFromISR
xQueueOverwrite xQueueOverwriteFromISR
xQueuePeek xQueuePeekFromISR
信号量(semaphore) xSemaphoreGive xSemaphoreGiveFromISR
xSemaphoreTake xSemaphoreTakeFromISR
事件组(event group) xEventGroupSetBits xEventGroupSetBitsFromISR
xEventGroupGetBits xEventGroupGetBitsFromISR
任务通知(task notification) xTaskNotifyGive vTaskNotifyGiveFromISR
xTaskNotify xTaskNotifyFromISR
软件定时器(software timer) xTimerStart xTimerStartFromISR
xTimerStop xTimerStopFromISR
xTimerReset xTimerResetFromISR
xTimerChangePeriod xTimerChangePeriodFromISR

xHigherPriorityTaskWoken参数

xHigherPriorityTaskWoken的含义是:是否有更高优先级的任务被唤醒了。如果为pdTRUE,则意味着后面要进行任务切换。

还是以写队列为例。

任务A调用xQueueSendToBack()写队列,有几种情况发生:

  • 队列满了,任务A阻塞等待,另一个任务B运行
  • 队列没满,任务A成功写入队列,但是它导致另一个任务B被唤醒,任务B的优先级更高:任务B先运行
  • 队列没满,任务A成功写入队列,即刻返回

可以看到,在任务中调用API函数可能导致任务阻塞、任务切换,这叫做”context switch”,上下文切换。这个函数可能很长时间才返回,在函数的内部实现了任务切换。

xQueueSendToBackFromISR()函数也可能导致任务切换,但是不会在函数内部进行切换,而是返回一个参数:表示是否需要切换,函数原型与用法如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
/* 
* 往队列尾部写入数据,此函数可以在中断函数中使用,不可阻塞
*/
BaseType_t xQueueSendToBackFromISR(
QueueHandle_t xQueue,
const void *pvItemToQueue,
BaseType_t *pxHigherPriorityTaskWoken
);

/* 用法示例 */

BaseType_t xHigherPriorityTaskWoken = pdFALSE;
xQueueSendToBackFromISR(xQueue, pvItemToQueue, &xHigherPriorityTaskWoken);

if (xHigherPriorityTaskWoken == pdTRUE)
{
/* 任务切换 */
}

pxHigherPriorityTaskWoken参数,就是用来保存函数的结果:是否需要切换

  • *pxHigherPriorityTaskWoken等于pdTRUE:函数的操作导致更高优先级的任务就绪了,ISR应该进行任务切换
  • *pxHigherPriorityTaskWoken等于pdFALSE:没有进行任务切换的必要

为什么不在”FromISR”函数内部进行任务切换,而只是标记一下而已呢?为了效率!示例代码如下:

1
2
3
4
5
6
7
8
void XXX_ISR()
{
int i;
for (i = 0; i < N; i++)
{
xQueueSendToBackFromISR(...); /* 被多次调用 */
}
}

ISR中有可能多次调用”FromISR”函数,如果在”FromISR”内部进行任务切换,会浪费时间。解决方法是:

  • 在”FromISR”中标记是否需要切换
  • 在ISR返回之前再进行任务切换
  • 示例代码如下
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
void XXX_ISR()
{
int i;
BaseType_t xHigherPriorityTaskWoken = pdFALSE;

for (i = 0; i < N; i++)
{
xQueueSendToBackFromISR(.. &xHigherPriorityTaskWoken); /* 被多次调用 */
}

/* 最后再决定是否进行任务切换 */
if (xHigherPriorityTaskWoken == pdTRUE)
{
/* 任务切换 */
}
}

上述的例子很常见,比如UART中断:在UART的ISR中读取多个字符,发现收到回车符时才进行任务切换。

在ISR中调用API时不进行任务切换,而只是在”xHigherPriorityTaskWoken”中标记一下,除了效率,还有多种好处:

  • 效率高:避免不必要的任务切换
  • 让ISR更可控:中断随机产生,在API中进行任务切换的话,可能导致问题更复杂
  • 可移植性
  • 在Tick中断中,调用vApplicationTickHook():它运行与ISR,只能使用”FromISR”的函数

使用”FromISR”函数时,如果不想使用xHigherPriorityTaskWoken参数,可以设置为NULL。

怎么切换任务

FreeRTOS的ISR函数中,使用两个宏进行任务切换:

1
2
3
portEND_SWITCHING_ISR( xHigherPriorityTaskWoken );

portYIELD_FROM_ISR( xHigherPriorityTaskWoken );

这两个宏做的事情是完全一样的,在老版本的FreeRTOS中,

  • portEND_SWITCHING_ISR使用汇编实现
  • portYIELD_FROM_ISR使用C语言实现

新版本都统一使用portYIELD_FROM_ISR

使用示例如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
void XXX_ISR()
{
int i;
BaseType_t xHigherPriorityTaskWoken = pdFALSE;

for (i = 0; i < N; i++)
{
xQueueSendToBackFromISR(.. &xHigherPriorityTaskWoken); /* 被多次调用 */
}

/* 最后再决定是否进行任务切换
* xHigherPriorityTaskWoken为pdTRUE时才切换
*/
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
}

中断的延迟处理

前面讲过,ISR要尽量快,否则:

  • 其他低优先级的中断无法被处理:实时性无法保证
  • 用户任务无法被执行:系统显得很卡顿
  • 如果运行中断嵌套,这会更复杂,ISR越快执行约有助于中断嵌套

如果这个硬件中断的处理,就是非常耗费时间呢?对于这类中断的处理就要分为2部分:

  • ISR:尽快做些清理、记录工作,然后触发某个任务
  • 任务:更复杂的事情放在任务中处理

这种处理方式叫”中断的延迟处理”(Deferring interrupt processing),处理流程如下图所示:

  • t1:任务1运行,任务2阻塞
  • t2:发生中断,
    • 该中断的ISR函数被执行,任务1被打断
    • ISR函数要尽快能快速地运行,它做一些必要的操作(比如清除中断),然后唤醒任务2
  • t3:在创建任务时设置任务2的优先级比任务1高(这取决于设计者),所以ISR返回后,运行的是任务2,它要完成中断的处理。任务2就被称为”deferred processing task”,中断的延迟处理任务。
  • t4:任务2处理完中断后,进入阻塞态以等待下一个中断,任务1重新运行

中断与任务间的通信

前面讲解过的队列、信号量、互斥量、事件组、任务通知等等方法,都可使用。

要注意的是,在ISR中使用的函数要有”FromISR”后缀。

资源管理

屏蔽中断

屏蔽中断有两套宏:任务中使用、ISR中使用:

  • 任务中使用:taskENTER_CRITICA()/taskEXIT_CRITICAL()
  • ISR中使用:taskENTER_CRITICAL_FROM_ISR()/taskEXIT_CRITICAL_FROM_ISR()

在任务中屏蔽中断

在任务中屏蔽中断的示例代码如下:

1
2
3
4
5
6
7
8
9
/* 在任务中,当前时刻中断是使能的
* 执行这句代码后,屏蔽中断
*/
taskENTER_CRITICAL();

/* 访问临界资源 */

/* 重新使能中断 */
taskEXIT_CRITICAL();

taskENTER_CRITICA()/taskEXIT_CRITICAL()之间:

  • 低优先级的中断被屏蔽了:优先级低于、等于configMAX_SYSCALL_INTERRUPT_PRIORITY
  • 高优先级的中断可以产生:优先级高于configMAX_SYSCALL_INTERRUPT_PRIORITY
    • 但是,这些中断ISR里,不允许使用FreeRTOS的API函数
  • 任务调度依赖于中断、依赖于API函数,所以:这两段代码之间,不会有任务调度产生

这套taskENTER_CRITICA()/taskEXIT_CRITICAL()宏,是可以递归使用的,它的内部会记录嵌套的深度,只有嵌套深度变为0时,调用taskEXIT_CRITICAL()才会重新使能中断。

使用taskENTER_CRITICA()/taskEXIT_CRITICAL()来访问临界资源是很粗鲁的方法:

  • 中断无法正常运行
  • 任务调度无法进行
  • 所以,之间的代码要尽可能快速地执行

在ISR中屏蔽中断

要使用含有”FROM_ISR”后缀的宏,示例代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
void vAnInterruptServiceRoutine( void )
{
## 用来记录当前中断是否使能 */
UBaseType_t uxSavedInterruptStatus;

## 在ISR中,当前时刻中断可能是使能的,也可能是禁止的
## * 所以要记录当前状态, 后面要恢复为原先的状态
## * 执行这句代码后,屏蔽中断
## */
uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR();

## 访问临界资源 */

## 恢复中断状态 */
taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );
## 现在,当前ISR可以被更高优先级的中断打断了 */
}

taskENTER_CRITICA_FROM_ISR()/taskEXIT_CRITICAL_FROM_ISR()之间:

  • 低优先级的中断被屏蔽了:优先级低于、等于configMAX_SYSCALL_INTERRUPT_PRIORITY
  • 高优先级的中断可以产生:优先级高于configMAX_SYSCALL_INTERRUPT_PRIORITY
    • 但是,这些中断ISR里,不允许使用FreeRTOS的API函数
  • 任务调度依赖于中断、依赖于API函数,所以:这两段代码之间,不会有任务调度产生

暂停调度器

如果有别的任务来跟你竞争临界资源,你可以把中断关掉:这当然可以禁止别的任务运行,但是这代价太大了。它会影响到中断的处理。

如果只是禁止别的任务来跟你竞争,不需要关中断,暂停调度器就可以了:在这期间,中断还是可以发生、处理。

使用这2个函数来暂停、恢复调度器:

1
2
3
4
5
6
7
8
/* 暂停调度器 */
void vTaskSuspendAll( void );

/* 恢复调度器
* 返回值: pdTRUE表示在暂定期间有更高优先级的任务就绪了
*## 可以不理会这个返回值
*/
BaseType_t xTaskResumeAll( void );

示例代码如下:

1
2
3
4
5
vTaskSuspendScheduler();

/* 访问临界资源 */

xTaskResumeScheduler();

这套vTaskSuspendScheduler()/xTaskResumeScheduler()宏,是可以递归使用的,它的内部会记录嵌套的深度,只有嵌套深度变为0时,调用taskEXIT_CRITICAL()才会重新使能中断。

参考原文地址